

Entwicklungs- und Prueflabor Holztechnologie GmbH · Zellescher Weg 24 · 01217 Dresden · Germany Vastern Timber Company Ltd. Mr Thomas Barnes The Sawmills Wootton Bassett Swindon Wiltshire SN4 7PD United Kingdom

Entwicklungs- und Prueflabor Holztechnologie GmbH Zellescher Weg 24 01217 Dresden · Germany

Phone: +49 351 4662 0 Fax: +49 351 4662 211 info@eph-dresden.de www.eph-dresden.de

Dresden, 26/07/2018

Test Report 2217011/A1 (Results with Batch 1)

Client:	Vastern Timber Company Ltd. Wootton Bassett, Swindon Wiltshire SN4 7PD United Kingdom
Date of order:	11 March 2017
Order:	Test of thermally modified timber (TMT): durability against wood- decay fungi and selected physical and mechanical properties
Contractor:	Entwicklungs- und Prüflabor Holztechnologie GmbH Laboratory Unit Biological Testing Zellescher Weg 24 01217 Dresden · Germany
Engineer in charge:	DiplIng. Kordula Jacobs

il. Kelia Plaslis

Dr. Wolfram Scheiding Head of Laboratory Unit Biological Testing

This test report contains data from test report 2217011 of 20/06/2018. It has 6 pages. Any duplication, even in part, requires written permission of EPH. These test results are exclusively related to the tested material.

1 Task

The EPH was engaged to determine the biological durability and selected physical and mechanical properties of thermally modified poplar and ash timber (TMT). Parts of the tests should be also done on untreated poplar and ash for comparison reasons. The wood of batches 1 and 2 was treated by different methods.

2 Test material

TMT poplar, first batch, delivered 08 May 2017 TMT ash, first batch, delivered 08 May 2017 untreated poplar, delivered September 2017 untreated ash, delivered September 2017

3 Test procedures

This report summarizes the test results of the positions 1 to 5 of order 2217011 (table 1) with materials of batch 1.

-		
Pos.	Test, property	Test standard
1	Biological durability against wood decay basidiomycetes (relevant for wood in use class 3)	EN 350 CEN/TS 15083-1
2	Bending strength (MOR) and bending modulus of elasticity (MOE)	EN 408
3	Impact bending strength (IBS) for indirect measure of brittleness	DIN 52189-1
4	Equilibrium moisture content (EMC) at climate 20/65 (as indicator for modification intensity)	EN 13183-1
5	Maximum swelling ratio α_{max} and anti-swelling efficiency (ASE)	DIN 52184, AA-20-38

Table 1: Test procedures

4 Biological durability against wood decay basidiomycetes (order position 1)

4.1 Test specification

Test method	CEN/TS 15083-1:2005 Durability of wood and wood products – determination of natural durability of solid wood against wood decay fungi, test methods – part 1: basidiomycetes.
Test material:	TMT poplar TMT ash
Reference timber:	Reference: <i>Fagus sylvatica</i> L.; oven-dry density (621 ± 14) kg/m ³
Test fungi:	Coniophora puteana, strain DSM 3085 Trametes (Coriolus) versicolor, strain CTB 863A
Replicates:	30 specimens of each material for each test fungus
Specimen size:	50×25×15 mm ³
Ageing prior to test:	Leaching according to EN 84:1997 22 June 2017 – 06 July 2017
Sterilisation:	Water damp
Test duration:	16 weeks
Emplacement/Removal of specimens:	09 August 2017 / 29 November 2017

4.2 Validity of the test

Both test series were valid. The demanded values of mean mass losses with reference wood were exceeded by both test fungi with both batches. Summarized validity data are given in table 1.

Table 1: Virulence values

test fungus	mean mass loss (n=15)	required minimum mass loss (DIN CEN/TS 15083-1)	
Coniophora puteana	32.0 %	\geq 30 %	
Trametes versicolor	29.4 %	\geq 20 %	

4.3 Results

Summarized results of dry mass loss and assigned durability classes are given in table 2. Single values are given in the annex, table A1 to A4.

test fungus	test material	median dry mass	durability classification (see	
	test material	loss [%] (n = 30)	scheme table 3)	
Coniophora puteana	TMT poplar	0.29	1 "very durable"	
	TMT ash	0.32	1 "very durable"	
Trametes versicolor	TMT poplar	0.95	1 "very durable"	
	TMT ash	1.14	1 "very durable"	

Table 2: Results of the durability test according to CEN/TS 15083-1 (basidiomycetes)

Table 3: Scheme for preliminary classification of durability (CEN/TS 15083-1:2005 Annex D)

Durability class	Description	Median mass loss		
1	very durable	≤ 5 %		
2	durable	> 5 % up to ≤ 10 %		
3	moderately durable	> 10 % up to \leq 15 %		
4	slightly durable	> 15 % up to ≤ 30 %		
5	not durable	> 30 %		

4.4 Evaluation

The basis for the classification is the result of that fungus, which caused the highest mass loss. According to the durability test CEN/TS 15083-1:2005 (wood destroying basidiomycetes), both TMT materials (poplar and ash) achieved durability class 1 (very durable).

5 Bending strength characteristics (order positions 2 and 3)

Summarized results of bending properties are given in tables 4 (poplar) and 5 (ash). Single values of the results are deposited at EPH and can be handed out after request.

Table 4: Bending strength of poplar

test method	material	number of specimens	mean value	coefficient of variation [%]
Modulus of rupture (MOR) according	treated	5	50.56	26.3
to DIN EN 408, flatwise [N/mm ²]	untreated	5	58.66	35.5
Modulus of elasticity (MOE)	treated	4	14,965	66.8
according to DIN EN 408, flatwise [N/mm²]	untreated	5	12,775	9.1
Impact bending strength (IBS) for	treated	5	26.7	43.9
indirect measure of brittleness	llealeu	3 specimens w	vith blunt, 2 with f	ibrous fracture
	untreated	5	29.5	33.6
	untreated	all specimens with blunt fracture		

Table 5: Bending strength of ash

test method	material	number of specimens	mean value	coefficient of variation [%]
Modulus of rupture (MOR) according	treated	5	49.48	47.3
to DIN EN 408, flatwise [N/mm ²]	untreated	5	88.42	12.8
Modulus of elasticity (MOE)	treated	5	21,840	17.7
according to DIN EN 408, flatwise [N/mm²]	untreated	5	13,035	10.7
Impact bending strength (IBS) for	treated	5	21.8	48.9
indirect measure of brittleness	treated	all specimens with blunt fracture		2
	untreated	5	73.9	30.8
	untreated	all specimens	with blunt fracture	2

Equilibrium moisture content and swelling behavior (order positions 4 and 5) 6

Summarized results of EMC and swelling characteristics are given in table 6 (poplar) and 7 (ash). Single values of the results are deposited at EPH and can be handed out after request.

test method	material	number of specimens	mean value	coefficient of variation [%]
Equilibrium moisture content at	treated	10	7.1	15.8
20/65 [%] acc. to EN 13183-1	untreated	10	10.2	5.1
Raw density at 20/65 [kg/m ³]	treated	10	377	7.9
acc. to DIN 52182	untreated	10	395	8.8
Maximum swelling ratio α_{max} radial	treated	10	1.8	24.5
[%] acc. to DIN 52184	untreated	10	3.6	10.8
Maximum swelling ratio α_{max}	treated	10	3.8	12.1
tangential [%] acc. to DIN 52184	untreated	10	9.0	5.4
ASE (anti-swelling efficiency)	treated	10	49.9	-
radial [%] acc. to AA-20-38				
ASE (anti-swelling efficiency)	treated	10	58.3	-
tangential [%] acc. to AA-20-38				

Table 6: Poplar - Equilibrium moisture content and swelling behavior

Table 7: Ash - Equilibrium moisture content and swelling behaviour

test method	material	number of specimens	mean value	coefficient of variation [%]
Equilibrium moisture content at	treated	10	8.7	4.7
20/65 [%] acc. to EN 13183-1	untreated	10	13.5	5.7
Raw density at 20/65 [kg/m ³]	treated	10	563	9.9
acc. to DIN 52182	untreated	10	664	9.6
Maximum swelling ratio α_{max} radial	treated	10	2.6	20.3
[%] acc. to DIN 52184	untreated	10	6.1	13.9
Maximum swelling ratio α_{max}	treated	10	4.8	23.3
tangential [%] acc. to DIN 52184	untreated	10	11.4	29.6
ASE (anti-swelling efficiency)	treated	10	57.2	-
radial [%] acc. to AA-20-38				
ASE (anti-swelling efficiency)	treated	10	58.0	
tangential [%] acc. to AA-20-38				

Dresden, 26/07/2018

Dipl.-Ing. Kordula Jacobs

Person in charge